• Users Online: 245
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Year : 2012  |  Volume : 37  |  Issue : 3  |  Page : 147-155

Rapid detection of multiple β-globin gene mutations by a real-time polymerase chain reaction in β-thalassemia carriers

1 Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
2 Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt

Correspondence Address:
Mervat A. El Feky
Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.7123/01.EJH.0000416544.53925.2a

Rights and Permissions


β-Thalassemia is a heterogeneous disorder caused by mutations that reduce or abolish the synthesis of the β-globin chain. The clinical severity of thalassemia major makes it a priority genetic disease for prevention programs involving population screening of heterozygotes and an optional prenatal diagnosis for carrier couples.

Aim of the study

This study aimed to determine the most common β-globin gene mutations in Egypt using a real-time PCR and fluorescently labeled hybridization probes specific for each mutation and to assess the feasibility of introducing this technique in an overall thalassemia prevention program.

Participants and methods

The study was carried out on 45 individuals: 37 β-thalassemia carriers [including five amniotic fluid (AF) samples], seven β-thalassemia major cases (including two AF samples), and one normal AF sample. The most common β-thalassemia mutations were characterized by real-time PCR with fluorescently labeled hybridization probes specific for IVSI-110, IVSI-1, IVSI-6, codon 37, and codon 39 in 28/37 (75.7%) carriers.


The most common mutation encountered was IVSI-110 (46%), followed by IVSI-1 (16.2%) and then IVSI-6 (13.5%). Codon 37 and codon 39 were not characterized in any sample. The genotype of the uncharacterized carriers was determined using a less sensitive method (reverse hybridization technique) and a relatively less common set of mutation was characterized as follows: IVSII-1(10.8%), codon 5 (5.4%), IVSII-745 (5.4%), and IVSI-116 (2.7%). The overall number of alleles detected using both techniques was calculated to be 51. The real-time PCR alone, with its assigned probes, detected 38/51(74.5%). Thirteen mutations (13/51=25.5%) remained uncharacterized by this technique (because of the unavailability of the corresponding probes). However, the reverse hybridization technique detected 48/51 alleles (94.1%). However, comparison between both techniques in terms of the shared mutations showed that the real-time PCR detected 38/38 (100%) of these mutations, whereas the reverse hybridization technique detected only 36/38 (94.7%).


Real-time PCR is a very rapid and accurate method for the detection of the β-thalassemia mutation, which may be valuable in cases for which a rapid decision has to be taken. Impediments to prenatal diagnosis as encountered in this study were attributed to refusal of termination of pregnancy by the family for religious/reasons, abortion following amniocentesis, and failure to determine the correct genotype of the AF analyzed.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded410    
    Comments [Add]    

Recommend this journal