• Users Online: 231
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Year : 2014  |  Volume : 39  |  Issue : 2  |  Page : 86-90

TPMT gene polymorphism detection by conventional PCR in pediatric acute lymphoblastic leukemia and its toxic effect

1 Department of Clinical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
2 Department of Pediatric, Faculty of Medicine, Alexandria University, Alexandria, Egypt

Correspondence Address:
Rania S Swelem
Clinical Pathology Department, Faculty of Medicine, Alexandria University
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1110-1067.139775

Rights and Permissions

Introduction The purine analog mercaptopurine is a key medication for the successful treatment of childhood acute lymphoblastic leukemia, particularly for the consolidation and continuation therapies. Thiopurine S-methyltransferase (TPMT) catalyzes the inactivation of mercaptopurine. TPMT single-nucleotide polymorphisms can prospectively identify patients at higher risk for mercaptopurine toxicity. Patients and methods The TPMT genotype was determined by in-house conventional PCR followed by digestion of the product with restriction enzymes, MwoI FastDigest and AccI FastDigest. The study was carried out on a total of 80 participants: 40 pediatric patients with standard risk B-cell acute lymphoblastic leukemia and 40 age-matched and sex-matched healthy controls. Mercaptopurine was given to the patients in consolidation phase with oral dose of 75 mg/m 2 daily for 4 weeks. Toxicity of the drug was assessed at the end of this phase by complete blood profile and liver function tests. Results In the patients group, 97.5% were of the wild-type homozygous TPMT*1/*1 genotype and 2.5% were of the heterozygous TPMT*1/*3A genotype. In the control group, we identified 90% with the TPMT*1/*1 genotype, 7.5% with the TPMT*1/*3A genotype, and 2.5% with the TPMT*1/*3C genotype. Among the wild-type *1/*1 genotype patients in the patient group, 32.5% of patients suffered from either hepatoxicity and/or myelosuppression. Conclusion The homozygous wild-type TPMT*1/*1 genotype was the most frequent genotype in both cases and controls. TPMT*1/*3A was the most prevalent mutant genotype in this study. Although some patients had wild-type allele genotyping, they developed signs of toxicity.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded245    
    Comments [Add]    

Recommend this journal