This study aimed to determine the efficacy of a Nigella sativa (NS) seed supplement on hemodynamics, hemoglobin (Hb) levels, and blood coagulation in patients with type 2 diabetes mellitus.
This study included 94 patients who were divided randomly into three dose groups. Capsules containing NS seeds were administered orally at a dose of 1, 2, and 3 g/day for 12 weeks. In all patients, the hemodynamic markers [systolic blood pressure, diastolic blood pressure, mean arterial pressure, heart rate (HR), and rate pressure product (RPP)], Hb levels, and coagulation markers (prothrombin time, partial thromboplastin time, fibrinogen levels, and platelet count) were determined before treatment and after 4, 8, and 12 weeks.
Patients receiving 1 g/day NS for 12 weeks (group 1) showed nonsignificant changes in the hemodynamic parameters, whereas patients who received a supplement of 2 g/day NS (group 2) showed a significant reduction in the systolic blood pressure, diastolic blood pressure, mean arterial pressure, HR, and rate pressure product, compared with the baseline values. An increase in the NS dose to 3 g/day exerted less effect on the blood pressure and reversed the effect on HR. The Hb levels decreased slightly, but significantly in the three groups. Partial thromboplastin time showed a significant increase in group 2 at the end of the treatment period and a nonsignificant increase in groups 1 and 3 throughout the treatment period. However, the fibrinogen levels increased significantly in groups 2 and 3 compared with the baseline values.
Ingestion of 2 g/day NS seeds for 12 weeks exerted a favorable impact on the hemodynamic parameters. However, NS should be administered with caution in diabetic patients with anemia.
β-Thalassemia major is a very serious blood condition, as affected patients are unable to synthesize enough healthy red blood cells and depend on blood transfusions throughout their life.
The aim of the study was to evaluate the lipid profile in patients with β-thalassemia major.
Fifty patients with β-thalassemia major and 25 healthy controls were included in this study. They were subjected to complete history taking, a thorough clinical examination, and laboratory investigations including complete blood count, liver function test, and assessment of serum ferritin levels and fasting lipid profile including total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and triglycerides (TGs) levels.
Patients with β-thalassemia major showed significantly lower total cholesterol, HDL-cholesterol, and LDL-cholesterol when compared with controls. Serum TG levels of β-thalassemia major patients were found to be significantly higher than the levels in control individuals. Our results revealed that the lipid profile changed in patients with thalassemia major.
In thalassemic patients, adequate chelation therapy with normalization of serum ferritin level and monitoring of TGs is highly recommended, and they are treated aggressively if the levels are increased. Several interventions including antioxidant therapy and vitamin-lowering and lipid-lowering agents should be used in high-risk patients with β-thalassemia major to decrease the risk of atherosclerosis.
Chronic lymphocytic leukemia (CLL) is an environment-dependent hematologic malignancy where interactions with accessory cells through cytokines and their receptors seem to confer a survival advantage, thus contributing to disease progression. Interleukin-22 (IL-22) is a T-cell-derived cytokine that promotes cell proliferation and survival through interaction with its receptor IL-22RA1, normally absent in normal immune cells, including B and T lymphocytes.
This study aimed to determine the plasma levels of IL-22 and the expression of IL-22RA1 on malignant cells in patients with B-cell CLL (B-CLL), together with their relation to clinical and prognostic characteristics of the disease.
The study was carried out on 62 newly diagnosed B-CLL patients. Twenty-five age-matched and sex-matched healthy individuals served as controls. Patients were diagnosed, according to the International Workshop on CLL guidelines, by cytomophology, immunophenotyping, conventional cytogenetic analysis, and fluorescence in-situ hybridization. Plasma IL-22 levels were measured by an enzyme-linked immunosorbent assay and the expression of IL-22RA1 on leukemic cells was assessed by flow cytometry.
Plasma IL-22 was significantly higher in B-CLL patients (range, undetectable 62.9 pg/ml; median, 6.6) compared with control participants (range, undetectable 6.4 pg/ml; median, undetectable) (P<0.01). IL-22RA1 expression was negative in all normal controls, whereas in B-CLL patients it was positively expressed in 35/62 CLL cases (56%). Taking the median level of IL-22RA1 expression in CLL patients as a cutoff level, overexpression (≥10%) was observed in 32/62 (52%) cases. IL-22RA1 expression correlated significantly positively with plasma levels of IL-22 (rs=0.817; P<0.01). Patients presenting with high CD38 expression had significantly higher plasma IL-22 levels compared with those with low CD38 (undetectable 62.9 pg/ml; median, 19.3 vs. undetectable 50.1 pg/ml; median, 3.1) (P<0.01) as well as overexpression of IL-22RA1. No significant relation could be established between either plasma IL-22 levels or IL-22RA1 expression with other clinical features or prognostic criteria of CLL.
This is the first report to describe the aberrant expression of the IL-22 signaling pathway in B-CLL and to link its overexpression with high CD38 expression, a known poor prognostic marker of the disease.
β-Thalassemia is a heterogeneous disorder caused by mutations that reduce or abolish the synthesis of the β-globin chain. The clinical severity of thalassemia major makes it a priority genetic disease for prevention programs involving population screening of heterozygotes and an optional prenatal diagnosis for carrier couples.
This study aimed to determine the most common β-globin gene mutations in Egypt using a real-time PCR and fluorescently labeled hybridization probes specific for each mutation and to assess the feasibility of introducing this technique in an overall thalassemia prevention program.
The study was carried out on 45 individuals: 37 β-thalassemia carriers [including five amniotic fluid (AF) samples], seven β-thalassemia major cases (including two AF samples), and one normal AF sample. The most common β-thalassemia mutations were characterized by real-time PCR with fluorescently labeled hybridization probes specific for IVSI-110, IVSI-1, IVSI-6, codon 37, and codon 39 in 28/37 (75.7%) carriers.
The most common mutation encountered was IVSI-110 (46%), followed by IVSI-1 (16.2%) and then IVSI-6 (13.5%). Codon 37 and codon 39 were not characterized in any sample. The genotype of the uncharacterized carriers was determined using a less sensitive method (reverse hybridization technique) and a relatively less common set of mutation was characterized as follows: IVSII-1(10.8%), codon 5 (5.4%), IVSII-745 (5.4%), and IVSI-116 (2.7%). The overall number of alleles detected using both techniques was calculated to be 51. The real-time PCR alone, with its assigned probes, detected 38/51(74.5%). Thirteen mutations (13/51=25.5%) remained uncharacterized by this technique (because of the unavailability of the corresponding probes). However, the reverse hybridization technique detected 48/51 alleles (94.1%). However, comparison between both techniques in terms of the shared mutations showed that the real-time PCR detected 38/38 (100%) of these mutations, whereas the reverse hybridization technique detected only 36/38 (94.7%).
Real-time PCR is a very rapid and accurate method for the detection of the β-thalassemia mutation, which may be valuable in cases for which a rapid decision has to be taken. Impediments to prenatal diagnosis as encountered in this study were attributed to refusal of termination of pregnancy by the family for religious/reasons, abortion following amniocentesis, and failure to determine the correct genotype of the AF analyzed.